Autoregressive Moving Average Models of Conifer Crown Profiles

نویسندگان

  • Samantha J. GILL
  • Gregory S. BIGING
چکیده

A time-series autoregressive moving average (ARMA) approach was used to develop stochastic models of tree crown profiles for five conifer species of the Sierran mixed conifer habitat type. Models consisted of three components: (1) a polynomial trend; (2) an ARMA model; and (3) random error. A Bayesian information criterion was used to evaluate alternative models. It was found that 70% of the crown profiles could be modeled using first-order ARMA [AR(l) or MA(l)] models, and that an additional 25% could be modeled using a white noise model [(AR(O)]. When the coefficients of the ARMA models were statistically significant, the models proved to be both visually and statistically an improvement over the polynomial trend (a Euclidean model). A binary classification system was used to determine if model type was related to tree or stand characteristics. Using this classification we found that it was possible to relate the appropriate model type to forest tree size and forest stand density with acceptable accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Autoregressive moving average models of crown profiles for two California hardwood species

Time-series Autoregressive Moving Average (ARMA) models were employed to model tree crown profiles for two California hardwood species (blue oak and interior live oak). There are three major components of these models: a polynomial trend, an ARMA model, and unaccounted for variation. The polynomial trend was used to achieve a stationary series. For these crown profiles, the use of a quadratic t...

متن کامل

Modified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals

When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...

متن کامل

Availability Prediction of the Repairable Equipment using Artificial Neural Network and Time Series Models

In this paper, one of the most important criterion in public services quality named availability is evaluated by using artificial neural network (ANN). In addition, the availability values are predicted for future periods by using exponential weighted moving average (EWMA) scheme and some time series models (TSM) including autoregressive (AR), moving average (MA) and autoregressive moving avera...

متن کامل

مدل بهینه‌سازی طراحی زنجیرۀ تأمین سوخت زیستی تحت تقاضای خودرگرسیون برداری میانگین متحرک

Biofuel is known as one of the best gasoline substitutes in the transportation industry. Designing an optimal supply chain is an essential requirement for the commercialization of biofuel production. This paper presents a mixed integer linear programming model to design a biofuel supply chain in which biofuel demand is under autoregressive moving average time series models. It is studied how th...

متن کامل

Comparison of autoregressive integrated moving average (ARIMA) model and adaptive neuro-fuzzy inference system (ANFIS) model

Proper models for prediction of time series data can be an advantage in making important decisions. In this study, we tried with the comparison between one of the most useful classic models of economic evaluation, auto-regressive integrated moving average model and one of the most useful artificial intelligence models, adaptive neuro-fuzzy inference system (ANFIS), investigate modeling procedur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008